Knowledge – Based Reservoir Simulation – A Novel Approach
نویسندگان
چکیده
It is well known that reservoir simulation studies are very subjective and vary from simulator to simulator. While SPE benchmarking has helped accept differences in predicting petroleum reservoir performance, there has been no scientific explanation behind the variability that has frustrated many policy makers and operations managers and puzzled scientists and engineers. In a recent book by the research group of R. Islam, a new approach is taken to add the Knowledge dimension to the problem. For the first time, reservoir simulation equations are shown to have embedded variability and multiple solutions that are in line with physics rather than spurious mathematical solutions. With this clear description, a fresh perspective in reservoir simulation is presented. Unlike the majority of reservoir simulation approaches available today, the 'knowledge-based' approach does not stop at questioning the fundamentals of reservoir simulation but offers solutions and demonstrates that proper reservoir simulation should be transparent and empower decision makers rather than creating a black box. Mathematical developments of new governing equations based on in-depth understanding of the factors that influence fluid flow in porous media under different flow conditions are introduced. Behavior of flow through matrix and fractured systems in the same reservoir, heterogeneity and fluid/rock properties interactions, Darcy and non-Darcy flow are among the issues that are thoroughly addressed. For the first time, the fluid memory factor is introduced with a functional form. The resulting governing equations are solved without linearization at any stage. A series of clearly superior mathematical and numerical techniques are also presented that allow one to achieve this objective. Mathematical solutions that provide a basis for systematic tracking of multiple solutions that are inherent to non-linear governing equations. This was possible because the new technique is capable of solving non-linear equations without linearization. To promote the new models, a presentation of the common criterion and procedure of reservoir simulators currently in use is provided. The models are applied to difficult scenarios, such as in the presence of viscous fingering, fractures, and others. It is demonstrated that the currently available simulators only address very limited range of solutions for a particular reservoir engineering problem. Examples are provided to show how the Knowledge-based approach extends the currently known solutions and provide one with an extremely useful predictive tool for risk assessment.
منابع مشابه
A Novel Assisted History Matching Workflow and its Application in a Full Field Reservoir Simulation Model
The significant increase in using reservoir simulation models poses significant challenges in the design and calibration of models. Moreover, conventional model calibration, history matching, is usually performed using a trial and error process of adjusting model parameters until a satisfactory match is obtained. In addition, history matching is an inverse problem, and hence it may have non-uni...
متن کاملA Novel Combinatorial Approach to Discrete Fracture Network Modeling in Heterogeneous Media
Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps barrier seems necessary for reservoir development studies. High degrees of heterogeneity and sparseness of data have incapacitated conventional deterministic methods in fracture network modelin...
متن کاملA Fully Integrated Approach for Better Determination of Fracture Parameters Using Streamline Simulation; A gas condensate reservoir case study in Iran
Many large oil and gas fields in the most productive world regions happen to be fractured. The exploration and development of these reservoirs is a true challenge for many operators. These difficulties are due to uncertainties in geological fracture properties such as aperture, length, connectivity and intensity distribution. To successfully address these challenges, it is paramount to im...
متن کاملSynthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution
Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...
متن کاملA Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs
More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...
متن کامل